ELECTRICAL ENGINEERING DEPARTMENT KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Fall 2012 ### EE 242/EE 571 Digital Communication and Coding ## **Instructor:** Dr. Tareq Y. Al-Naffouri Office: Building 3, Room 303 (KAUST) Building 59, Room 1085 (KFUPM) Phone: 02-808-0298 Email: tareq.alnaffouri@kaust.edu.sa Web: http://faculty.kfupm.edu.sa/ee/naffouri ### **Course Description:** This course is designed to introduce to the student the fundamentals of the theory of communications and coding, in particular of digital communications. The course will provide in-depth knowledge of communication fundamentals, which include Digital transmission of information across discrete and analog channels. Sampling; quantization; noiseless source codes for data compression: Huffman's algorithm and entropy; block and convolutional channel codes for error correction; channel capacity; digital modulation methods: PSK, MSK, FSK, QAM; matched filter receivers. Performance analysis: power, bandwidth, data rate and error probability. ### **Text Book:** J. Proakis, Digital Communications, 5th edition, McGraw-Hill Science/Engineering/Math, 2006. ### **Additional References:** - John R. Barry, David G. Messerschmitt, and Edward A. Lee, Digital Communication, Springer; 2003 - 2. David Tse and Pramod Viswanath, Fundamentals of Wireless Communication, Cambridge University Press - 3. B. Sklar, Digital Communications: Fundamentals and Applications, Prentice Hall, 2001 - 4. Theodore Rappaport, Wireless Communications: Principles and Practice, 2nd Edition, Prentice Hall, 2001 - 5. R. G. Gallager Principles of Digital Communication, under preparation, (Draft available online). ## **Course Webpage:** http://faculty.kfupm.edu.sa/ee/naffouri/courses/ee242.html ## **Homework Assignments:** Homework will be assigned approximately biweekly ## **Problem Sessions:** This course will require lots of practice to understand the course material. As such, I will carry one problem session outside class on a need basis. Attendance is optional but is highly encouraged. ## **Office Hours (Tentative):** ### • KFUPM Sunday: 10:00 AM-12:00 PM ## • KAUST Saturday: 10:30 AM -12:00 PM Tuesday 1:00 PM - 2:30 PM ## **Grading Policy (Tentative):** Students will be assigned grades on the following basis: Homeworks/Projects 20% Major Exam I 20% Major Exam II 20% Final Exam 40% # <u>Coverage Outline:</u> (Time and emphasis may be adjusted as needed) | No. | Topic | Lectures | Reading | |-----|--|----------|-------------| | 1 | Basic Elements of Digital Communication Systems Communication Channels | 2 | Ch1 | | 2 | Source Coding Sampling, Quantization, and PCM Entropy and mutual information Coding for discrete memoryless sources | 4 | Ch3 | | 3 | Characterization of Communication Signals and Systems Representation of Band-Pass Signals and Systems Signal Space Representations Representation of Digitally Modulated Signals | 5 | Ch4 | | 4 | Optimum Receivers for the Additive White Gaussian Noise Channel Optimum Receiver for Signals Corrupted by Additive White Gaussian Noise Performance of the Optimum Receiver for Memoryless Modulation Trade off of power, bandwidth, data rate, and error probability | 6 | Ch 5 | | 5 | Nyquist Pulse Shaping | 2 | | | 6 | Error Correcting Coding and Channel Capacity Block coding Convolutional coding Channel capacity | 7 | Ch7,
Ch8 | | 7 | In Class Major Exams | 2 | |